If it's not what You are looking for type in the equation solver your own equation and let us solve it.
60c^2+39c-45=0
a = 60; b = 39; c = -45;
Δ = b2-4ac
Δ = 392-4·60·(-45)
Δ = 12321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12321}=111$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-111}{2*60}=\frac{-150}{120} =-1+1/4 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+111}{2*60}=\frac{72}{120} =3/5 $
| V=3.14x16x11 | | x/16=128 | | x=+1/3x+1/2+16=49 | | 41+d=85 | | 9x+7x+6x=286 | | w/4+3=5 | | 13x+11=8x+8+4x+14 | | -x^2+39x-200=0 | | 8(6x=3) | | 3x+25=≤68 | | 2=11+3(x+) | | 7×w=65.8 | | f-92=51 | | r+46=85 | | (5x+9)°+(7x-9)°=180 | | e+121=314 | | 11x+12=4x+14+6x+7 | | 7(2k+6)-2=-44 | | 5/4x-1/4=5 | | -2(4r-8)=20 | | 15d−–3d+–7d=–11 | | 18x–34+18x–34=12x+76 | | 6=s/9. | | 2x+1=-4+9 | | x+105=80 | | 3x+10=4(2x3 | | 27=3Xy | | (2x+15)+(3x−5)=180 | | 2z/7+7=2 | | 12(5+2x)=4x-(6-9) | | 5x+x+15-x+5+x=90 | | 12x-24=6x+4x+6x |